Warm-Up

ELM: Coordinate Geometry & Graphing	Review: Algebra 1 (Standard 16.0)
v v v v v v v v v v	Given: $f(x) = -x^2 + 3x - 5$ Find the following function values and write the associated ordered pair:
The figure above shows the graph of $y = f(x)$	a) $f(-2)$
What are all values of x for which $f(x) > 0$?	b) $f(t+1)$
A $x < 0$ B $x > 1$ C $x > 2$ D $0 < x < 2$ E $x < 0$ or $x > 2$	
Express the vertex in function notation	
Current: Algebra 1 (Standard 12.0)	Other: Algebra (Standard 6.0)
Given: $g(x) = \frac{x^2 - 9}{x + 3},$	Graph the function that agreed with $g(x)$ in the previous (current) problem.
Write a simpler function that agrees with $g(x)$ at all but one point.	

Standard Definition of Derivative

Standards: Algebra 1 2.0, 4.0, 6.0, 7.0, 11.0, 16.0, 17.0, 18.0 Calculus 4.0

Objectives: Derive the Standard Definition of Derivative Connect Algebra standards to Calculus

Consider the function f(x) = 3x + 1

Think about what happens to the function values as x gets closer and closer to x = 1.

Approach x = 1 from the left and approach x = 1 from the right.

(Note: x gets closer and closer to x = 1 but does not have to reach x = 1.)

Notice that the function value, f(x), gets closer and closer to 4 from either side of x = 1.

This brings us to the concept if a limit.

For the limit of a function to exist, the left-hand limit must equal the right-hand limit.

The notation is as follows:

The limit of the function f as x approaches c from the right is written $\lim_{x \to a} f(x)$

The limit of the function *f* as *x* approaches *c* from the left is written $\lim_{x \to a} f(x)$

The limit of the function f as x approaches c is written, $\lim_{x\to c} f(x)$.

 $\lim_{x\to c^-} f(x) \text{ is said to exist if and only if } \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) \text{ , otherwise the limit Does Not Exist (DNE)}$

For our example,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$

$$\therefore \lim_{x \to 1} f(x)$$

$$= \lim_{x \to 1} (3x+1)$$

$$= 4$$

Is there a method for finding the limit of this function without using the graph?

Yes, the method is called Direct Substitution. $\lim_{x \to 1} (3x+1)$

 $\lim_{x \to 1} (3x+1) = 3(1)+1 = 4$

Now consider the function f(x) = x - 3.

Find $\lim_{x\to -3}(x-3)$.

Using direct substitution,

 $\lim_{x \to -3} (x - 3)$ = (-3) - 3= -6

As x gets closer and closer to x = -3, the function value f(x) gets closer and closer to -6.

Now let's look at the function $g(x) = \frac{x^2 - 9}{x + 3}$. Notice that x = -3 is not in the domain of g.

The function can be simplified by factoring the numerator and using the equivalent form of 1.

 $g(x) = \frac{x^2 - 9}{x + 3}$ $g(x) = \frac{(x + 3)(x - 3)}{x + 3}$ g(x) = x - 3

Notice that the simplified function g is the same as our function f above. The original function g agrees with our function f at all but one point. How can we find the point where they do not agree?

Yes! Use limits! Also use the fact that x = -3 is not in the domain of g. We will use x = -3 as our approach value of x. A direct substitution in g yields $\frac{0}{0}$ indeterminate form so we must simplify g then use a direct substitution again.

$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$

=
$$\lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3}$$

=
$$\lim_{x \to -3} (x - 3)$$

=
$$(-3) - 3$$

=
$$-6$$

The graphs of *f* and *g* agree at all but one point. The graph of *g* is the line y = x - 3 with a hole at the point (-3,-6). Using the limit helps us find the hole in the graph. The equivalent form of 1 lets us know that we have a hole at x = -3 and not a vertical asymptote.

Using the following graph discuss:

Average Rate of Change = Slope of Secant Line Instantaneous Rate of Change = Slope of Tangent Line This will lead to using the limit and arriving at the

Standard Definition of Derivative

Derivative of a function f at x

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

In other words, the derivative is the slope of the tangent line to f at a given point.

Notation: f'(x) Read "*f* prime of x"

Example:

Given $f(x) = x^2$, find f'(x) using the standard definition of derivative.

Method 1: Using factoring to simplify.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

=
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

=
$$\lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x}$$

=
$$\lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

=
$$\lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x)}{\Delta x}$$

=
$$\lim_{\Delta x \to 0} (2x + \Delta x)$$

=
$$2x + (0)$$

=
$$2x$$

$$\therefore f'(x) = 2x$$

Method 2: Using fractional decomposition to simplify.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 - x^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x}{\Delta x} + \frac{(\Delta x)^2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2x + \Delta x)$$

$$= 2x + (0)$$

$$= 2x$$

$$\therefore f'(x) = 2x$$

1) Given $f(x) = x^2 + 3x - 5$, find f'(x) using the standard definition of derivative.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 + 3(x + \Delta x) - 5 - (x^2 + 3x - 5)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + (\Delta x)^2 + 3x + 3\Delta x - 5 - x^2 - 3x + 5}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2 + 3\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x (2x + \Delta x + 3)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2x + \Delta x + 3)$$

$$= 2x + (0) + 3$$

$$= 2x + 3$$

$$\therefore f'(x) = 2x + 3$$

Using factoring to simplify,

2) Given $f(x) = x^3$, find f'(x) using the standard definition of derivative.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - x^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{3x^2 \Delta x}{\Delta x} + \frac{3x (\Delta x)^2}{\Delta x} + \frac{(\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^2 + 3x \Delta x + (\Delta x)^2)$$

$$= 3x^2 + 3x(0) + (0)^2$$

$$= 3x^2$$

$$\therefore f'(x) = 3x^2$$

Using fraction decomposition to simplify.

The following question is the type of multiple-choice question that a student would see on the Advanced Placement Exam in Calculus AB.

If $f(x) = 4x^3 + 7x - 5$, which of the following is equivalent to f'(x)?

[A]
$$4x^2 + 7$$
 [B] $\lim_{\Delta x \to 0} \frac{12(x + \Delta x)^2 + 7 - (12x^2 + 7)}{\Delta x}$

[C]
$$\lim_{\Delta x \to 0} \frac{4(x + \Delta x)^3 + 7(x + \Delta x) - 5 - (4x^3 + 7x - 5)}{\Delta x}$$
 [D] $12x^2 + 7x$

The correct answer is [C]